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Era of Accelerators
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= What is the most efficient machine for emerging
applications?
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How efficient is my system? @

Energy Efficiency = Performance / Power
(task / energy) (task / time) (energy / time)

» Performance
—How fast is my system?
= Power
— A constraint for my system

= Energy efficiency

—How much performance with a given constraint?



Why do we care about
power & energy efficiency?

= All Day Battery Life = Electricity Bill

Ouch!



How to do power & energy modeling? @AR

= Power and energy efficiency
—Power dissipation = f(signal activities)
—Signal activities = g(applications)
= Commercial CAD tools with gate-level simulation

(e.g. PrimeTime PX)
—Most accurate but extremely slow

= Analytic modeling (e.g. McPAT)
—Popular in computer architecture literature
—Validation is hard, simulation is slow



Strober Power/Energy Modeling [ISCA “16] %}
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[ISCA "16] Kim et al. "Strober: Fast and Accurate Sample-Based Energy Simulation for Arbitrary RTL"



Power Modeling 101 @

Piotar = den + Plegr = @ CLVDZDf + lieakVop

In Fact 1
den — EVgD 2 Ci D; | 1]

leall signals

C;: capacitance signal i drives
We hope D;: toggles per cycle of signal i
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kesome signals

[1] Najm. “A Survey of Power Estimation Techniques in VLSI Circuits, [EEE Trans on VLS|, 1994 7



= Microprocessors

— Well studied on parch events I
(e.g. cache miss, branch misprediction) || | e

— Collect statistics from existing
performance counters

, . z . "
2 DD . . ke 7k What are the
€per — signals in
counter _E}:D_ J :
= What about Al accelerators? V4l
— Unlikely you have intuition Al Accelerator

— Very unlikely there are performance counters

— Signals should be automatically selected



Simmani: Runtime Power Modeling @
with Automatic Signal Selection AR

= Goal
— Find key signals for power dissipations from any RTL

= Observation
—Signals showing similar toggle patterns
=» Similar effect on dynamic power dissipation

= Qur Approach
—Construct toggle pattern matrix from VCD dumps
—Select key signals with signal clustering
—Module-level power model regression against power
traces from CAD tools
— Automatic counter instrumentation for runtime power

estimation with FPGAs
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Power Model Training Flow
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Constructing Toggle Pattern Matrix
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Selecting Key Signals @
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Power Model Regression @

» Linear model with
polynomial features =
simple, intuitive, low training
& inference overhead

Prj = OQ+Pix1j+ Poxaj+ - - Buxnjt

Cycle-accurate
Power Traces

ﬁ] ]X%j -+ ﬁzz./\%j + -4

Proxijxaj+ -+ Brazxy jxajxzj+ -

= Regularization & variable
selection with the elastic net
— prediction accuracy +
interpretability

= Constrain coefficients >=0

(except uncore)
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Power Model Instrumentation

BAR

= Automatically insert activity counters for selected signals
= Read counters periodically from FPGA-accelerated simulation
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Experimental Results @

= Target: Rocket(in-order processor) + Hwacha(vector accelerator)
= Total # of RTL signals = 115K

* Training set: ISA tests, pbmarks, random samples from
long workloads.
= Technology: TSMC 45nm
= Training time
— CAD tool (DC + ICC + PrimeTimePX) : ~ a day

— Power model training: ~ a half day
— FPGA compile time: ~ 6hrs

= Errors (AVGE, RMSE) for pbenchmarks (test set) <=9 %
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Power Trace of SqueezeNet on Hwacha

= Inference on 11 images (~22B cycles)
= Counters are samples every 100K cycles from the FPGA
» Errors against Strober <= 10%

SqueezeNet Baseline
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What’s Next with Simmani? @AR

= Power window identification from power profiling
= Power virus problem

= Thermal modeling

= Average power management (e.g. DVFS)

= Peak power management for heat/voltage droop
mitigation

= Open-source: simmani.github.io
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https://simmani.github.io/

Summary @

= Power, Energy Efficiency, Heat Dissipation
— Major concerns for computer systems

— Runtime power modeling for design-time evaluations as well
as dynamic power optimizations (e.g. DVFS)

= Simmani Power Modeling
— Construct toggle pattern matrix from VCD dumps
— Select key signals with signal clustering
— Module-level power model regression against power traces
from CAD tools
— Automatic counter instrumentation for runtime power
estimation with FPGAs

— More studies on dynamic power/thermal management for
various classes of systems!

= Open-source: simmani.github.io

18


https://simmani.github.io/
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