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ABSTRACT
This paper presents a novel runtime power modeling methodology
which automatically identifies key signals for power dissipation of
any RTL design. The toggle-pattern matrix is constructed with the
VCD dumps from a training set, where each signal is represented
as a high-dimensional point. By clustering signals showing similar
switching activities, a small number of signals are automatically
selected, and then the design-specific but workload-independent
activity-based power model is constructed using regression against
cycle-accurate power traces obtained from industry-standard CAD
tools. We can also automatically instrument an FPGA-accelerated
RTL simulation with runtime activity counters to obtain power
traces of realistic workloads at speed. Our methodology is demon-
strated with a heterogeneous processor composed of an in-order
core and a custom vector accelerator, running not only microbench-
marks but also real-world machine-learning applications.

1 INTRODUCTION
As power and energy efficiency has been the primary concern for
both low-power portable computers and high-end servers, runtime
power estimation plays an important role not only in validation
of hardware design ideas during the design process but also in
effective runtime power, energy, and thermal optimizations and
management. As a result, there has been significant prior work on
various power-modeling methodologies.

Microarchitectural analytic power models [11, 28, 44, 45, 60, 66]
are widely used in computer architecture research and early hard-
ware design phases. These models in general rely on microarchi-
tectural performance simulators [3, 7, 55, 67] to collect necessary
statistics. This approach helps computer architects gain some high-
level intuition before RTL implementation, but are limited to mi-
croarchitectures similar to those used to build the abstract model.
Moreover, as simulation rate is a bottleneck with this methodology,
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computer architects are forced to sample and examine only a tiny
fraction of real-world workloads for their studies. Finally, since
power validation requires at least RTL implementation, construct-
ing and validating power models is much more difficult for new
types of application-specific accelerators.

Alternatively, power modeling using performance counters has
been widely adopted for runtime power and thermal management
in real microprocessors [4, 5, 8, 25, 46, 63]. Power models are con-
structed in terms of statistics from existing performance coun-
ters, and calibrated against power measurement from real systems.
These power models provide quick power estimates by profiling
full execution of applications, which can be used in runtime power
and thermal optimizations such as dynamic voltage and frequency
scaling (DVFS). However, this method has been only successful
for well-known traditional microprocessors with existing real im-
plementations. With a novel hardware design, designers should
manually identify microarchitectural activities highly correlated
with dynamic power dissipation, which is also extremely difficult
for non-traditional hardware designs.

With the slow down in historical transistor scaling, the only
way to sustain performance gain is through specialization with
application-specific accelerators. Indeed, RTL implementation has
become a standard procedure in computer architecture research to
estimate the area, power, and energy for novel design ideas. How-
ever, dynamic power dissipation is not one-dimensional and cannot
be statically determined as it depends heavily on signal activities
that can vary across different workloads. Moreover, runtime power,
energy, and thermal-management techniques should be studied for
novel hardware designs to improve their energy efficiency. For this
reason, a general, accurate, and efficient runtime power modeling
methodology is required for future architecture research.

In this paper, we present Simmani, a novel activity-based runtime
power modeling methodology that automatically selects the key
signals for power dissipation in any RTL design. Our methodology
was inspired by the observation that signals showing similar toggle
patterns have similar effect on dynamic power dissipation. In the
power modeling flow, the toggle pattern matrix, where each RTL
signal is represented as a high-dimensional point, is constructed
from VCD dumps generated from RTL simulation of the training set.
As similarities of signals are quantified by the Euclidean distances
between two points, a small number of signals are selected through
clustering with dimensionality reduction. Then, the power model
is trained through regression against cycle-accurate power traces
from industry-standard CAD tools.

https://doi.org/10.1145/3352460.3358322
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We also present a technique to automatically instrument the tar-
get RTL design with toggle activity counters for FPGA-accelerated
RTL simulation, which enables runtime power analysis for non-
trivial workloads. By applying compiler passes using the FIRRTL
compiler [27], Simmani automatically inserts activity counters for
the selected signals that can be sampled by the software simulation
driver for runtime power estimation.

The main contributions of this paper are as follows:
• Simmani is a general and easy-to-use runtime power model-
ing methodology for any RTL design. From VCD dumps and
power traces, Simmani automatically constructs power mod-
els by selecting a small number of signals without requiring
designers’ intuition.

• Simmani trains and validates power models against RTL
designs with cycle-accurate power traces from industry-
standard CAD tools, which gives a high confidence for the
model. Simmani also uses standard statistical methods to
minimize modeling errors.

• Simmani enables fast runtime power estimation in FPGA-
accelerated simulations by automatically instrumenting any
RTL design with activity counters, dramatically reducing
designers’ manual effort. Fast power simulation also enables
various case studies including power/thermal analysis of
custom accelerators for emerging applications.

2 RELATEDWORK
2.1 Microarchitectural Power Modeling
Analytical power modeling [11, 28, 44, 45, 60, 66] combined with
microarchitectural software simulators [3, 7, 55, 67] is widely-used
for computer architecture research. This method enables early
architecture-level design-space exploration, helping designers gain
high-level intuitions before RTL implementation. However, the
power models need to be strictly validated against RTL implemen-
tations or real systems, which is difficult when exploring new non-
traditional designs. We believe Simmani will help improve pre-RTL
power models for novel hardware designs by discovering necessary
modeling variables for future accelerator research.

2.2 Power Model Validation
Shafi et al. [59] validate an event-driven power model against the
IBM PowerPC 405GP processor. Mesa-Martinez et al. [49] validate
power and thermal models by measuring the temperature of real
machines. The authors measure temperature using an infrared cam-
era and translate temperature to power using a genetic algorithm.
Xi et al. [69] validate McPAT against the IBM POWER7 processor
and illustrate how inaccuracies can arise without careful tuning
and validation. Lee et al. [41] propose a regression-based calibra-
tion of McPAT against existing processors to improve its prediction
accuracy. McKeown et al. [47] characterize power and energy of
an open-source 25-core processor from its silicon implementation.
However, these methodologies can only be applied using existing
machines or proprietary data. Jacobson et al. [28] suggest a power
model from pre-defined microarchitectural events and validate it
against RTL simulation. However, the approach relies on designer
annotations and microbenchmarks exploiting familiarity with a
particular family of processor architectures.

2.3 Runtime Power Modeling with
Performance Counters

Power modeling based on performance-monitoring counters is
also popular for power estimation [4, 5, 8, 25, 46, 63]. This method
provides a quick power estimate, which is also useful for runtime
power/thermal optimizations, by profiling full execution of appli-
cations. In addition, LeBeane et al. [37] show a power modeling
technique that maps platform-specific event counters to McPAT’s
event counts.

There are also a variety of studies on phase/kernel-based power
modeling. Isci et al. [26] characterize power phases with event
counter statistics collected by dynamic binary instrumentation.
Zheng et al. [70] present a cross-platform phase-based power mod-
eling methodology that predicts the target design’s power from the
host platform’s counter statistics. Wu et al. [68] and Greathouse
et al. [20] develop a GPGPU performance and power modeling
methodology that clusters training kernels based on performance
scaling behaviors and classifies the group of a new kernel with
neural nets based on performance counter values.

However, these methodologies are limited to well-known mi-
croprocessors with existing silicon implementations. For novel
hardware designs, computer architects need intuition to define
representative microarchitectural events highly correlated with
power dissipation, which is extremely difficult without collecting
empirical data from multiple costly tape-outs.

Unlike the previous work on event-based power modeling, Sim-
mani trains high-fidelity runtime power models by automatically
selecting a small number of signals for any RTL designs using industry-
standard CAD tools. In addition, activity counters collecting signal
statistics are automatically inserted in FPGA-accelerated simula-
tions to provide rapid power estimates. We also believe our work
can bootstrap various counter/phase-based power modeling efforts,
by hinting at what activity counters should be available in novel
hardware designs for emerging applications.

2.4 Statistical Performance/Power Modeling
There is significant previous work on statistical performance/power
modeling for uniprocessors [16, 29, 30, 38, 39] and chip multi-
processors [23, 32, 40]. Regression [16, 29, 38–40] or neural net-
work [23, 30, 32] models based on microprocessor microarchitec-
tural parameters are trained from simulations of a small number
of configurations to predict performance and power for unseen
configurations without detailed simulations.

However, all these models are constructed in the microprocessor
context. For non-traditional hardware designs, high-level microar-
chitectural parameters must be carefully identified using designers’
intuition.

2.5 Cycle-Level RTL Power Modeling
Activity-based cycle-level RTL power modeling was also explored
in previous work. Metha et al. [48] build table-based power models
for small-size modules by clustering their input transitions result-
ing in similar energy dissipation to reduce the number of entries in
the table. Our approach is different in that we cluster signals based
on their toggle patterns to choose a small number of signals as
regression variables. Gupta et al. [21] construct four-dimensional
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Figure 1: Power modeling flow

table-based macro models for combinational logic indexed by in-
put/output signal switching activities.

Bogliolo et al. [10] build regression-based RTL power models in
terms of input and output signals of combinational macro blocks
divided by registers. This approach is not scalable since all switching
activities of registers need to be tracked, which is intractable for
complex hardware designs. In contrast, Simmani is scalable as it
automatically selects a small number of signals from a large-scale
design for power-model regression.

2.6 FPGA-Based Power/Energy Modeling
There has also been extensive work on accelerating power and
energy modeling using FPGAs. Coburn et al. [13] instrument the
target design with power computing units for each RTL library com-
ponent, which incurs significant FPGA resource overhead for large
hardware designs. Ghodrat et al. [19] improve this methodology to
reduce the FPGA resource overhead by splitting the instrumented
target design across the FPGA and software, which may signifi-
cantly slow down the emulation speed without careful partitioning.

Bhattacharjee et al. [6] manually instrument event counters
to collect statistics from the FPGA for runtime power modeling.
Sunwoo et al. [64] manually instrument cycle-level power models
that are trained with manually selected signals. Even though these
methodologies are applied to fairly large hardware designs, they do
not generalize for any RTL design, require designer intuition and
manual effort as 1) microarchitectural events and RTL signals must
be manually identified and 2) the target design must be manually in-
strumented with event counters. In contrast, Simmani automatically
identifies the RTL signals most correlated with power dissipation
and automatically adds activity counters to collect statistics from
FPGA-accelerated simulations.

Zoni et al. [71] select signals from input/output signals in the
module boundaries of the design hierarchy, construct a linear power
model in terms of these signals, and instrument the runtime power
model visible by software. In general, input and output signals are
not the most correlated with power dissipation of a given module,
and thus, a smaller number of internal signals are preferred to

a larger number of input and output signals for accurate power
modeling.

Kim et al. [35] propose sample-based energy modeling using
FPGAs. In their methodology, any RTL design is instrumented with
scan chains and I/O trace buffers to snapshot the RTL state from
FPGAs. By randomly sampling RTL state snapshots from realistic
applications running on complex hardware designs and replaying
the snapshots on gate-level simulation, the average power and the
energy of the whole execution can be accurately computed with the
confidence interval. However, this methodology does not provide
runtime power estimation, which is crucial for power phase analysis
and runtime power optimization techniques. Moreover, the instru-
mentation overhead is much larger than just adding event counters
for a small number of signals. We instead use this framework to
provide ground truth for power-model training and validation with
non-trivial workloads.

3 POWER MODEL TRAINING
In this paper, we present the Simmani framework, which automat-
ically selects signals most correlated with power dissipation and
trains power models in terms of the selected signals for any RTL
design. The core idea is to cluster signals showing similar toggle
patterns to choose distinctive signals, and then, train power models
in terms of these selected signals using cycle-accurate power traces.
The intuition is that signals showing similar toggle patterns have
similar effect on dynamic power dissipation and can be factored to
share the same coefficient in the power model, minimizing mod-
eling error. Figure 1 describes the overall power modeling flow in
the Simmani framework.

Section 3.1 introduces the power modeling background. Sec-
tion 3.2 explains how the toggle patten matrix is constructed from
VCD dumps. Section 3.3 describes how important signals for power
dissipation are found through clustering. Section 3.4 explains how
the number of signals is determined through model selection with
simulated annealing. Section 3.5 explains how to obtain detailed
cycle-accurate power traces from commercial CAD tools. Section 3.6
shows how module-level power models using the selected signals
are trained through regression against cycle-accurate power traces.
Section 3.7 presents how the window size for the toggle pattern
matrix is automatically decided.

3.1 Power Modeling Background
CMOS power consumption can be decomposed into three major
factors:

Ptotal = Pdyn+Pdp+Pleak = α f (CLV
2
DD+VDD Ipeak ts )+VDD Ileak

The dynamic power, Pdyn , is consumed when the capacitance,
CL , is charged or discharged, while the direct-path power, Pdp , is
consumed during rise/fall times due to short-circuit current, Ipeak ts ,
when transistors are switching. Both cause power dissipation when
signals toggle, the ratio of which is captured by the activity factor,
α . The leakage power, Pleak , is, on the other hand, consumed due
to leakage current, Ileak , even when transistors are not switching.

We may assume leakage power is constant under the condition
that the temperature is well-controlled and the threshold voltage
does not change dynamically. In this case, the leakage power can
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be statically computed by CAD tools. In addition, the direct-path
power is minimized by CAD tools, and thus, much smaller than dy-
namic power. However, dynamic power, a primary factor in power
dissipation, is hard to determine statically since the activity factor
is highly workload-dependent. For this reason, static block-level
dynamic power estimation from CAD tools can easily be pessimistic
or optimistic. Therefore, we should collect activity statistics from
simulations to estimate the dynamic power dissipation of each
workload.

Dynamic power can be computed by summing signal toggle
densities over all CMOS gates [53]:

Pdyn =
1
2
V 2
DD

∑
д∈{дates }

CдDд

where Cд and Dд are the load capacitance and the toggle density
of gate д, respectively. Unfortunately, such toggle densities are
only available through extremely detailed gate-level simulation,
which is not practical for collecting related statistics from real-
world workloads running on complex hardware designs.

Therefore, for large-scale designs, we approximate the dynamic
power in terms of event statistics associated with their effective
capacitances:

Pdyn ≈
1
2
V 2
DD

∑
e ∈{events }

CeDe

where Ce and De are the effective capacitance and the statistics of
event e , respectively.

Microarchitectural power models such as Wattch [11] and Mc-
PAT [45] analytically compute capacitances for regular structures [54]
and collect manually identified event statistics from microarchitec-
tural software simulators [7, 55, 67] before RTL implementation.
Performance-counter-based power modeling [4, 5, 8, 25, 46, 63] uses
existing counters in the system, and finds the effective capacitance
of each counter event through regression against power measure-
ment of the real machine. These methodologies have been effective
for well-known traditional microarchitectures.

However, for arbitrary novel designs, these approaches are very
challenging as 1) manually selecting important signal/event ac-
tivities is difficult and 2) finding the effective capacitance is also
difficult. In the following sections, we tackle both problems for any
RTL design automatically and systematically.

3.2 Toggle-Pattern Matrix from VCD Dumps
The first step for power-model training is to construct the toggle-
pattern matrix using VCD dumps from RTL simulations of the
training set. For accurate power modeling, we carefully choose
small workloads that represent real-world applications. If the train-
ing set is too small, the trained model cannot accurately predict
power consumption of unseen workloads. If the training set is too
large, the model training is bottlenecked by RTL simulation and
power analysis tools that need to process a large volume of VCD
dumps. In this paper, we choose ISA tests and microbenchmarks
and replays of random sample snapshots from long-running ap-
plications, as an initial attempt, because these workloads highly
utilize processors with a variety of operations. Synthesizing more
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Figure 2: Constructing a toggle-pattern matrix.

representative workloads remains as the future work as discussed
in Section 6.

The toggle-patternmatrix is a collection of toggle-density vectors
of all signals in the RTL design. Each element of this matrix is
constructed as follows:

vi j =
total number of toggles of signal i over window j

width of signal i ×window size

wherevi j is the element at row i and column j of the toggle pattern
matrix.

Figure 2 shows a simple example of how the toggle-pattern
matrix is constructed from VCD dumps with a window size of
two cycles. For single-bit signals, the number of toggles is just the
number of value transitions. For example, the total number of value
transitions of signal a over window 0 is 2, and thus,va0 = 2/2 = 1.0.
The other elements for signal a and b are computed in the same
way.

For multi-bit busses, the number of toggles is the Hamming
distance between the value at the previous cycle and the value at
the current cycle. For example, the Hamming distance of signal c
at cycle 1 is 2. The reason each matrix element is divided by the
width of the signal is we want to group busses of different widths
together in the same cluster if they show similar toggle patterns.
Hence, vc0 = 2/(2 × 2) = 0.5.

The toggle-pattern matrix is very large for a complex hardware
design. But most entries in this matrix are zeros for a typical hard-
ware design, since only a small number of signals tend to be active
in a given time slot. Therefore, the toggle-pattern matrix is repre-
sented as a sparse matrix using the compressed sparse row (CSR)
format.

The similarity of two signals is measured by the Euclidean dis-
tance between two vectors. It is intuitive that two signals having
a short distance between them have a similar effect on power dis-
sipation. In this case, the window size plays an important role in
quantifying similarities. Determining the window size is discussed
in Section 3.7.
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3.3 Automatic Signal Selection
Once the toggle-pattern matrix is constructed, we want to partition
signals into a handful of groups, each of which collects signals
showing similar toggle patterns. Since the similarity is measured
as the Euclidean distance between two signal vectors, this problem
is identical to a clustering problem.

There are several challenges in signal clustering. First, exact
clustering is known as an NP-hard problem, and thus, a randomized
algorithm such as k-means should be used, where clustering results
are different with different initial seeds. Moreover, with a non-
trivial hardware design, there are a large number of signals, each
of which is represented as a very high-dimensional point, which
makes clustering more challenging. Specifically, if we have signal
traces of N cycles with window sizew , the dimension of each signal
is N /w , which can be easily a very large number with a long trace.

Spectral clustering is a class of algorithms for clustering of high-
dimensional data points through dimensionality reduction [9]. In
this paper, we reduce the dimension of data by projecting data into
principal components from singular vector decomposition (SVD).
The algorithm to partition the data set into k clusters is as follows:

(1) Find the spaceV spanned by the top k right singular vectors
from SVD.

(2) Project the data points intoV through matrix multiplication.
(3) Cluster the projected points through k-means++ [1], which

selects better initial seeds than random initial centroids.
(4) Repeat multiple times and select the clustering with the best

score.
It is also proven that the projection brings the data points closer to
their cluster centers 1. In addition, this algorithm can be efficiently
implemented with high-performance linear algebra libraries.

Once signal clustering is done, the signals that are the closest
to the center of each cluster are selected, which will be regression
variables in power model training. The rationale is these signals
have the smallest variance of similarities to other points in the same
cluster, and thus, we expect them to introduce the smallest errors
in regression than any other signals.

3.4 Finding the Number of Signals
The clustering algorithm in Section 3.3 finds the optimal clustering
when the number of signals is given, but does not determine the
number of clusters. In many cases, it is hard to know in advance
how many signals should be selected for power modeling with an
arbitrary hardware design. We want to select as many signals as
possible for accurate power modeling, but not too many signals to
avoid model overfitting and to enable power model instrumentation
(Section 4).

Finding the number of signals is the same as a model selection
problem. We want to select the best clustering among candidate
models for a given data. The idea is we run the clustering algorithm
with different numbers of clusters and find the one having the best
objective score.

For model selection, we use the Bayesian Information Criterion
(BIC) [58], which is commonly used beyond the hypothesis tests.
The BIC is a penalized model-fit statistic as it prefers a model having
less parameters to a model having more parameters but only fitting
1For the theorem and its proof, refer to [9]

marginally better. 2 Formally, for modelMj , the BIC is formulated
as follows:

BICj = pj ln(n) − 2ln(Lj )

where n is the number of points in the data, and pj and Lj are
the size and the likelihood of modelMj , respectively. The absolute
value of the BIC is barely interpretable. However, the difference of
values, ∆BIC = BICnew − BICold , is of interest. For example, we
determine the new model is very strong compared to the old model
if ∆BIC < −10 3.

For clustering, we use the formula derived by Pelleg andMoore [57],
assuming underlying distributions are spherical Gaussians. The
maximum likelihood estimate for the variance is:

σ̂ 2 =
1

n − k

n∑
i=1

∥xi − µ(xi )∥
2

where k is the number of clusters and µ(xi ) is the cluster center of
xi . Intuitively, this quantity explains how far points in each group
are scattered away from their cluster center.

Then, the log likelihood of model Mj is the summation of log
likelihoods of all clusters:

ln(Lj ) = −
n

2
ln(2π ) −

nd

2
ln(σ̂ 2) −

n − k

2
+

k∑
i=1

ni ln(
ni
n
)

where d is the dimension of points and ni is the number of points in
cluster i . The number of parameters, pj , is (k −1)+dk +1 for (k −1)
cluster probabilities, k centroids of dimension d , and one variance
estimate. Intuitively, this quantity expresses how well signals in
each group are clustered around their cluster center. This metric
is also used by SimPoint [61] to find the optimal clustering for
program phases.

To select the number of signals, we keep track of ∆BIC by in-
creasing the number of clusters, k . To avoid getting stuck at local
minima, we employ simulated annealing as follows:

(1) Run the clustering algorithm with the initial k , and compute
the BIC, which is the initial best clustering.

(2) Increase k , and run the clustering algorithm and compute
the BIC.

(3) If ∆BIC = BICcur − BICbest < −10, update the best cluster-
ing, and go to 2.

(4) Otherwise, decrease the temperature, T, and go to 2 with the
probability of exp(∆BICT ).

This algorithm starts with a high temperature, which gradually
decreases over iterations. Therefore, this algorithm is not likely to
terminate in early iterations even if no better clustering is found,
helping escape from local minima. However, with low temperatures,
the algorithm has a very high probability to terminate in later
iterations as the current best clustering is very likely to be the
global optimum.

2Compared to the Akaike information criterion (AIC), the BIC assigns more penalties
on the number of parameters, having higher chances to reject models with more
signals.
3 The Bayes factor is equal to exp (−∆BIC/2)
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3.5 Obtaining Cycle-Accurate Power Traces
For accurate power modeling for RTL designs, cycle-accurate power
traces are necessary. We obtain these power traces using commer-
cial CAD tools as shown in Figure 1. We first obtain the gate-level
design from the target RTL using logic synthesis4 with the tar-
get technology library5. Clock gating is also automatically inferred
during synthesis. Since commercial SRAM compilers were not avail-
able, we characterize SRAMs used in the target design with CACTI
6.5 [52], and generate library files using commercial library compil-
ers6. To obtain accurate estimates for the timing, area, and the floor-
plan of the final silicon, we also place and route the post-synthesis
design7.

After place-and-route, the commercial power analysis tool8 can
compute cycle-accurate power traces from RTL VCD dumps. In this
detailed power analysis, RTL signal activities are propagated into
gate-level signals and the cycle-by-cycle power for modules in the
design is computed. Since the full cycle-by-cycle power traces are
generated instead of just the average power, this process tends to
be the bottleneck for power modeling.

Throughout this paper, we assume the cycle-accurate power
traces obtained in this section are the true power for training and
evaluation.

3.6 Power-Model Regression
Once n signals are automatically selected (Section 3.3), we train the
power model in terms of these signals against the cycle-accurate
power traces from commercial CAD tools (Section 3.5). As dis-
cussed in Section 3.1, power-model regression finds the effective
capacitances for the signal activities. We are also interested in
module-level power modeling for thermal analysis [62].

Formally, for each module k , we want to find a function fk that
accurately approximates the actual power dissipation in terms of
signal activities:

pk j ≈ fk (x1j ,x2j , · · · ,xnj )

for all time window j, where pk j and xi j are the power consump-
tion of module k and the toggle density of signal i in window j,
respectively. The total power consumption of the target design in
window j is just the sum of power consumptions in window j over
all modules.

Power models need to be as simple as possible to minimize the
computation overhead for runtime power and thermal analysis.
On the other hand, power models need to be more complex than
linear regression since, in general, power dissipation is not a linear
function of the activities of the selected signals. To cope with non-
linearity, we use linear regression with interactions and high-order
terms. One justification is that, theoretically, a non-linear function
can be approximated with its Taylor expansion with polynomial
terms. There is also a large amount of empirical evidence that linear
regression with polynomial terms of manually selected events and
signals is reasonably accurate for microprocessors [5, 8, 25, 28, 40,

4We used Synopsys Design Compiler version O-2018.06-SP4
5 We used the TSMC 45nm technology
6We used Synopsys Library Compiler version J-2014.09-SP4 and Synopsys Milkyway
version J-2014.09-SP4
7 We used Synopsys IC Compiler version O-2018.06-SP4
8 We use Synopsys PrimeTimePX version O-2018.06-SP4

64]. Lastly, these interactions and high-order terms can be viewed
as an approximation to hidden activities that are not solely captured
by the selected signals.

Therefore, we also assume power dissipation is a function of the
following form:

pk j = α+β1x1j + β2x2j + · · · βnxnj+

β11x
2
1j + β22x

2
2j + · · ·+

β12x1jx2j + · · · + β123x1jx2jx3j + · · ·

whereα and β ’s are parameters to be trained. As there are an infinite
number of terms in the Taylor expansion, we limit the order of terms
to two. However, the number of terms still grows exponentially
with the number of signals. For instance, if 50 signals are selected,
there will be 2550 terms in the model. Linear regression with this
many terms tends to be unstable and suffers from high variance,
losing prediction accuracy.

Moreover, models with a large number of variables are less in-
terpretable, as well as increasing the compute overhead. From the
perspective of activity-based power modeling, each regression vari-
able represents a certain activity in the design and its coefficient
is its effective capacitance. However, all these activities are not
equally important for power modeling across different modules.
Indeed, we want to systematically select most of the single-order
terms but only a small number of higher-order terms to correlate
between signal activities and power consumption without prior
knowledge of these signals.

The previous two issues can be viewed as a problem of reg-
ularization and variable selection in linear regression. Prediction
accuracy can be improved by shrinking coefficients through regu-
larization with penalized regression, which reduces the variance of
coefficients while trading off the bias. Variable selection can further
improve the prediction accuracy, preventing overfitting, as well as
the interpretability.

In this paper, we employ the elastic net [72] for both regulariza-
tion and variable selection. The elastic net is penalized regression
with a convex combination of the L1 and L2 penalties of coefficients.
As a result, the elastic net behaves mostly like LASSO [65], while
preserving the prediction power of ridge regression.

We assume the training data is standardized having the zero
mean and the unit standard deviation before regression. Then, to
find the coefficients β with given power trace p and toggle densities
X, the elastic net solves the following optimization problem:

min
β

{
1
2n

| |p − Xβ | |2 + λ
(
1 − ρ

2
| |β | |2 + ρ | |β | |1

)}
(1)

where ρ and λ are determined by K-fold cross-validation, a tech-
nique that splits the training data into K groups for both train-
ing and validation. We also restrict that all coefficients are non-
negative9. This optimization can be efficiently solved by coordinate
descent [18]. Notice that ridge regression and LASSO are special
instances of the elastic net when ρ = 1 and ρ = 0, respectively.

When we apply the elastic net for power modeling, many unim-
portant variables are desirably eliminated as shown in Section 5.2.

9 We do not have this constraint on uncore in our example target design, whose power
is given by subtracting the sum of power of all other modules from the total power.
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3.7 Finding the Window Size
As alluded in Section 3.2, the window size plays an important role in
quantifying similarities in the toggle-pattern matrix. If the window
size is too small, two very similar signals (e.g. the input and the
output of shift registers) may have a large distance between them.
On the other hand, if the window size is too large, two distinctive
signals may appear similar. Therefore, the window size affects the
number of selected signals and in turn prediction accuracies.

The window size is dependent on the target design and the train-
ing data set. We also observed that the clustering algorithm tends
to select more signals with a larger window size. This is because
a shorter window size dramatically increases distances between
points, and thus, having more clusters does not help improving the
quality of clustering.

Indeed, manual selection of the window size is another challenge
and requires many trials and errors. Instead, we propose automatic
signal selection as follows:

(1) For a given window size,
(a) Select signals with clustering (Section 3.3 and 3.4).
(b) Train a power model for each submodule (Section 3.6) and

compute its BIC.
(2) Select the window size that minimizes the total score of

power models.
Note that Step 1 can be parallelized for different window sizes

to minimize runtime overhead as trainings are independent of one
another. For the score of each power model in Step 2, we use the
BIC for linear regression:

BIC =

∑N
i error2i
σ 2 + ln(N ) · d f

where errori is the error of each data point i , d f is the degree of
the freedom of the model, which is a function of λ in Equation (1),
and N and σ 2 are the size and the variance of data, respectively.
Intuitively, the BIC finds the model with small errors as well as a
small number of variables.

Computing exact d f for the elastic net is computationally ex-
pensive. However, when λ in Equation (1) is small, which is the
case when only a small number of variables are selected, d f is very
close to the degree of the freedom of LASSO, which is equal to the
number of nonzero coefficients [73]. Therefore, we approximate
d f with the number of nonzero coefficients in the model when we
compute the BIC.

Since we have multiple power models for each submodule in
the design, we may want to select the new window over the old
window if the geometric mean of all Bayes factors [31] of each
model is greater than 1, which is expressed as follows:

K

√∏K
k=1 exp

(
−∆BICk

2

)
= exp

(
−
∑K
k=1 ∆BIC

k

2K

)
> 1

⇔
∑K
k=1 ∆BIC

k =
∑K
k=1 BIC

k
new −

∑K
k=1 BIC

k
old < 0

where K is the number of models and BICk is the BIC of model
k . Therefore, we select the window size that minimizes the sum of
all BICs of each model.

Section 5.3 presents evaluations on how window sizes affect the
number of selected signals and the accuracy of power models.
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Figure 3: Tool flow for runtime power analysis with FPGAs

4 POWER MODEL INSTRUMENTATION
Once the power model is trained as in Section 3, the target RTL
needs to be instrumented for runtime power analysis and evaluation.
The target RTL design is automatically instrumentedwith the power
model using custom transforms inserted in the FIRRTL compiler as
shown in Figure 3. Section 4.1 overviews the FIRRTL compiler that
enables hardware designers to write custom compiler passes for any
RTL design. Section 4.2 shows how activity counters collecting the
toggle activities of the selected signals are automatically inserted
into the target RTL by a custom compiler pass. Section 4.3 shows
how runtime power traces are obtained from FPGA-accelerated
RTL simulation for various case studies.

4.1 The FIRRTL Compiler
Software compilers like LLVM have their own intermediate repre-
sentations (IRs) to let software engineers write custom transforms
and instrumentation. Likewise, the FIRRTL compiler [27] provides
an IR for hardware designs. By writing custom transforms that
operate on any hardware design represented by this IR, hardware
designers can avoid design-specific engineering effort. We wrote
custom compiler passes applicable to any hardware design to instru-
ment activity counters and transform the target design for runtime
power analysis on the FPGA.

For now, the FIRRTL compiler supports Chisel designs only.
However, note that this framework is language-agnostic. Once
there is a front-end to translate a HDL to FIRRTL, this framework
can be reused for any hardware design in the HDL, significantly
improving productivity 10.

4.2 Activity Counter Insertion
As shown in Figure 3, activity counters are automatically inserted
by the compiler pass using the information from the power model.
Figure 4 shows components instrumented by the compiler pass to
collect the toggle activities of the selected signals.

For each selected signal, the HD unit is inserted to compute the
Hamming distance between the value at the current cycle and the
value at the previous cycle. For a single-bit signal, it is just an XOR
gate. For a multi-bit bus, the HD unit computes XORs of individual

10The Verilog frontend is in progress
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bits and counts the number of 1’s. If the selected signal is a wire, a
shadow register that keeps the value at the previous cycle is also
inserted, and then the input and the output of this shadow register
are fed into the HD unit. On the other hand, if the selected signal is
a register, we do not need a shadow register. Instead, the input and
the output of the selected register are connected to the HD unit.

We also need counters that increment by the Hamming distance
on each cycle. For this purpose, a counter register file is instantiated
in the top-level module, with the number of write ports equal
to the number of selected signals. The HD units in submodules
are connected to the counter register file across different module
hierarchies, and thus, the compiler pass creates module ports along
the connections to the write ports.

The counter register file has one read port and can be visible
as architectural state for software running in the target design.
Alternatively, this read port can be directly connected to the top-
level I/O for FPGA-accelerated RTL simulation as explained in
Section 4.3.

4.3 Runtime Power Analysis with FPGAs
FPGA-accelerated RTL simulation is the only viable way for per-
formance, power, and energy evaluation of complex RTL designs
running real-world software before tape-out. The Strober frame-
work [34, 35] automatically generates FPGA-accelerated RTL sim-
ulators from any RTL designs with custom compiler passes. We
use this framework to obtain runtime power traces from FPGAs.
Once the activity counters are inserted, the instrumented target
design is consumed by the following custom transforms for FPGA-
accelerated RTL simulation (Figure 3).

After the FPGA-accelerated RTL simulator is compiled into the
bitstream, it is run on the FPGA along with the software simula-
tion driver. Figure 5 shows how the transformed target design is
mapped to the host platform. The processor RTL is mapped into
the FPGA while the data for the last-level cache (LLC) and the
DRAM are mapped into the FPGA DRAM. For the timing of the
memory system, we have an abstract timing model that only keeps
the tags of the LLC on the FPGA. The software driver with abstract
I/O devices runs on the host CPU. The processor RTL infrequently
communicates with the I/O devices through the I/O transport unit
on the FPGA only when necessary (e.g. console I/O), minimizing
simulation slowdown.

To obtain power traces, the simulation driver periodically reads
the activity counter values through the activity counter unit on the
FPGA, which is connected to the read port of the counter register
file. When the counter values are read, the simulation is stalled so
that it does not change the behavior of the target system. Counter
sampling is infrequent, and thus, the simulation driver infrequently
polls the counter read unit that only pauses the simulation when
the counters are sampled.

After activity statistics are collected from the FPGA, the software
driver, which has the power model information, performs the rest
of computations for model-level power and dumps runtime power
values to a file. As such, we obtain the power traces over the whole
execution of real-world applications at the end of the simulation.

We also estimate the power dissipation of the LLC and the DRAM
with event counters in the memory timing model. For the LLC, we
characterize its read and write energy per access as well as its
static power with CACTI [52], and collect the number of read/write
accesses to the LLC. For the DRAM, we assume Micron’s LPDDR2
SDRAM S4 [51] and use the spreadsheet power calculator provided
by Micron [50] with statistics on read/write operations and row
activations of the DRAM.

5 EVALUATION
5.1 Experimental Setup
Most of the power training algorithm (Section 3) is implemented
in Python with the SciPy’s sparse matrix libraries, while the tog-
gle matrix construction algorithm (Section 3.2) is implemented in
C++. We import k-means++ (Section 3.3) and the elastic net solver
(Section 3.6) from scikit-learn [56].

Parameter Rocket+Hwacha
Processor Rocket 5-stage in-order processor

Accelerator 2048-bit wide vector unit and 64-bit wide scalar unit
Registers 32(int)/32(fp)/64(scalar)/256(vector)

L1 I and D $ Capacity: 32 KiB, Associativity: 8 ways
ITLB & DTLB Reach: 128 KiB, Associativity: fully-associative

L2 TLB Reach: 4 MiB, Associativity: direct-mapped
Cycle time 1 ns

Area 1.79 mm x 1.52 mm

L2 $
Capacity: 1 MiB, Latency: 23 cycles,

Read energy: 116.1 pJ, Write energy: 95.9 pJ,
Leakage power: 21.0 mW

DRAM
Latency: 80 cycles, Number of banks: 8,

Number of rows in each bank: 16K, Open-page policy

Table 1: Parameters for Rocket+Hwacha
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The Simmani framework is demonstrated with the heteroge-
neous processor composed of the Rocket in-order core11 [2] and
the Hwacha vector accelerator12 [42, 43] (Rocket+Hwacha). Table 1
shows its configuration for the evaluation. To best of our knowledge,
no activity-based power model is developed for this design. We
have abstract timing models for the L2 cache and the DRAM since
we do not have corresponding RTL implementations for now. Even
though we present only Rocket+Hwacha in this paper, we have
also evaluated the BOOM out-of-order processor [12] as well as
Rocket running the SPEC 2006/2017 integer benchmark suites [33].

The cycle time, area, and the floorplan of each processor are
obtained from Synopsys Design Compiler (logic synthesis) and
Synopsys IC Compiler (place-and-route) with the TSMC 45nm tech-
nology. Figure 6 shows the floorplan result of Rocket+Hwacha.

For power model training, we ran CAD tools for a day and the
training algorithm for a half day on a high-performance server 13.

For FPGA-based simulation, we use AWS F1 instances. The FPGA-
based simulator was synthesized at the frequency of 75 MHz, which
took 6 hours, but the simulation rate for the case studywas 39.3MHz
on average due to the overhead of counter sampling. For accurate
validation, we carefully matched the timing of the memory sys-
tem and the I/O devices between FPGA-based RTL simulation and
software RTL simulation.

The training data set consists of 1) ISA tests, 2) microbenchmarks
with their small input sets, and 3) 200 random sample snapshots
from each benchmark of SqueezeNet with two images (dog and
mousetrap).

For power model validation in Section 5.4, we used microbench-
marks with their large input sets. For case study in Section 5.5, we
used a different set of 11 images for each benchmark of SqueezeNet.

5.2 Signal and Variable Selection
Table 2 shows the results of automatic signal selection by the al-
gorithm in Section 3.3 with the average power and the standard
deviation of each module for the training set. We counted all sig-
nals and data busses shown in the VCD dump except intermediate

11 Commit: 50bb13d7887e5f9ca192431234b057ae9d8edb6c
12 Commit: 519ed1642674909d89769eae1bd4fc35fa383e49
13 Intel Xeon 32-core CPU @ 3.2 GHz with 25 MB L3 cache and 256 GB main memory.

Total number of RTL signals 115,285

Module Selected Single-order Second-order Average Standard
Signals Terms Terms Power (mW) Dev (mW)

Total 113 72 599 143.22 14.40
Rocket Fetch Unit 18 14 123 3.84 1.19

Rocket Core 27 30 134 7.55 2.24
Rocket FPU 1 7 72 2.00 1.87
Scalar Unit 1 16 70 3.43 1.16

Vector Sequencer 17 13 16 4.69 2.80
Vector Register File 1 24 74 36.30 4.57
Vector FP MulAdd 7 14 41 1.76 3.74
Vector Execute Unit 10 27 114 24.48 3.25
Vector Memory Unit - 13 22 2.24 0.48
L1 ICache & ITLB 8 15 79 16.38 6.31
L1 DCache & DTLB 19 12 72 9.76 4.69

Uncore 4 15 75 30.77 3.58

Table 2: Results of automatic signal and variable selection

signals generated by the FIRRTL compiler (starting with _GEN_).
Our signal clustering algorithm selected 113 signals out of 115,285
signals.

At first glance, it was surprising that only one signal was selected
for the vector register file even though it dissipates a significant
amount of power. If we had selected signals manually, the enable
signals for this module would have been our primary choice. How-
ever, it turns out that those signals were clustered together with
related signals in other modules but are not selected as representa-
tive signals. For example, the vector regfile write-enable and mask
signals were clustered with a control signal of the floating point
multiply-add unit, which was a representative signal of that cluster.
Similarly, signals in the vector memory unit were clustered with
signals in the load-store units of the vector execution unit, while
signals in the FPU were clustered with signals in the Rocket core.

Table 2 also presents the variable selection results from power-
model regression (Section 3.6). Note that some of terms appear
across multiple modules, and thus, the total number of terms is
smaller than the summation of the number of terms from each
submodules. Our power modeling keeps 671 terms in total out of
6,554 candidate terms for training.

We also notice that cross-order terms can capture events across
different modules. For example, our power modeling finds the in-
teraction between a predicate signal in the vector execute unit and
a hit signal in the data cache, which has a positive effect on the
power dissipation of the vector register file.

5.3 Automatic Window Size Selection
Figure 7 shows how the window size affects the number of selected
signals and the geometric mean of the R2 values, a statistic for how
well the model fits the training data, across module-level power
models. First of all, more signals are selected as the window size
increases. This is because a bigger window size makes data points
closer, and therefore, having more clusters improves the quality of
clustering. We can also see that this effect diminishes as the window
size gets bigger.

Another trend is selecting more signals does not necessarily
result in more accurate models. A model fits the training set well
if its R2 value is closer to 1.014. As seen in Figure 7, the geometric
mean of R2 is the max at the window size of 340 cycles, and the
sum of BICs, the score for window size selection in Section 3.7, is

14However, we do not use R2 for model selection because a high R2 may result from
overfitting
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Figure 7: The number of selected signals and the geometric
mean of R2 across module-level power models for different
window sizes
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Figure 8: Power prediction errors for microbenchmarks

also the smallest at this point. Therefore, our training algorithm
selects 113 signals with the window size of 340 cycles.

5.4 Power Model Validation
In this validation, we used well-known floating-point microbench-
marks vectorized for Rocket+Hwacha with various precisions. We
estimated runtime power by sampling activity counters from the
FPGA every 128 cycles, and compared it against power traces from
Synopsys PrimeTime PX.

We computed the normalized mean-squared errors (NMSREs)
and the average errors (AVGEs) across benchmarks. For N samples,
NRMSEs and AVGEs are calculated as follows:

NRMSE =

√∑N
i (pi − p

pred
i )2/N

pavд
, AVGE =

|pavд − p
pred
avд |

pavд

The NRMSE accounts for point-by-point errors while the AVGE
cares about the average values only. The NRMSE also tends to be
bigger than the AVGE.

Figure 8 shows both errors are within 9 % and our power model-
ing is reasonably accurate for these microbenchmarks.

5.5 Case Study
In this section, we demonstrate how Simmani can be used for cus-
tom accelerators targeting emerging applications in the HW/SW
co-design flow. As an example of embedded vision applications, we
use SqueezeNet [22], a neural network for image classification that
achieves AlexNet-level accuracy with very small models. We evalu-
ated three versions of SqueezeNet. In addition to the base variant
(SqueezeNet), we evaluated a variant with 8-bit weight quantiza-
tion (SqueezeNet-8bits), and a variant with both quantization
and compressed weight storage (SqueezeNet-Comp).

We ported and vectorized SqueezeNet so that these three bench-
marks can run on Rocket+Hwacha. For FPGA-based simulation, we

Benchmark Cycles per inference (B) SpeedupScalar Vector
SqueezeNet 22.89 1.58 14.45

SqueezeNet-8bits 26.53 1.57 16.94
SqueezeNet-Comp 16.02 1.37 11.72

Table 3: Performance of Rocket+Hwacha for SqueezeNet
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Figure 11: Energy efficiency for SqueezeNet

made initramfs Linux images that contain SqueezeNet binaries as
well as 11 images for inference. To obtain power traces, we sampled
counters from the FPGA every 100K cycles. For comparison, we
also evaluated unoptimized scalar SqueezeNet benchmarks, which
do not utilize the vector unit at all.

Table 3 shows the performance of Rocket+Hwacha for these
three benchmarks without and with vectorization. First of all, vec-
torization significantly improves its performance. Without vector-
ization, quantization decreases the performance, while with vec-
torization, it marginally improves the performance. However, in
both cases, there is a significant performance improvement with
compression on top of vectorization.

Figure 9 shows the average power breakdowns for SqueezeNet.
For the scalar benchmarks, we assume the vector accelerator is per-
fectly power-gated. Without vectorization, both quantization and
compression reduce power consumption as they require less mem-
ory accesses. Surprisingly, Simmani reveals that Rocket+Hwacha
consumes almost the same power across the vectorized benchmarks.
This is because the vector accelerator is highly utilized during in-
ferences thanks to small model sizes.



Simmani MICRO-52, October 12–16, 2019, Columbus, OH, USA

Bab
y

Bea
r

Bed Boa
t

Car Cat
Mon

ke
y

Pen
cil

Plan
e

Rab
bit

Tax
i

Weight Load

Lin
ux

 Boo
t

Pow
ero

ff

Figure 12: Power trace of Rocket+Hwacha for SqueezeNet-Comp

Figure 10 shows the power prediction errors with the 95 % con-
fidence intervals. To validate the power estimates in Figure 9, we
took random 50 sample snapshots of 1024 cycles from each bench-
mark. When each of these random snapshots was taken, its runtime
power was estimated by sampling activity counters for this period
of 1024 cycles. After the FPGA-based simulation was done, the
power estimate of each sample point was obtained from sample
replays, which was in turn compared against its runtime power
estimate from the FPGA to compute the NRSE for 50 sample points.
For the AVGE, we compared the average over the whole power trace
against the average power estimate from sample replays, which also
provided its confidence interval. From this validation, we can see
that our power modeling also achieves good prediction accuracy
for SqeeuzeNet.

Figure 11 shows the energy efficiency for SqueezNet. First of all,
we can significantly improve energy efficiency with vectorization,
which achieves significant speedups despite the increase in power
consumption. Also, with vectorization, both quantization and com-
pression gain energy efficiency as they require the same-level of
power consumption.

Figure 12 shows the entire power trace without L2 and DRAM
power for the vectorized SqueezeNet-Comp benchmark, while boot-
ing Linux, loading the model weights, and running inferences for 11
images over 20 billion cycle, which took 14minutes on the FPGA but
can take weeks or months with the CAD tools. We can also detect
power phase changes over the whole execution of the benchmark,
which will improve the effectiveness of runtime power/energy man-
agement techniques. We can also observe that power is more vari-
able in the later layers than in the earlier layers for each inference
because the later layers are more memory-intensive.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented Simmani, a novel runtime power mod-
eling methodology for any RTL designs by automatically selecting
key signals for power dissipation. We also automatically instru-
mented the target design with activity counters to collect statistics
from FPGAs, without requiring manual effort. We demonstrated
Simmani’s power modeling capabilities for non-traditional RTL de-
signs with a case study of HW/SW co-design for machine-learning
applications. Simmani is open-source 15 so that our methodology
can be easily integrated into various accelerator research projects.

This section further discusses Simmani’s potential use cases and
enhancements.

Thermal Analysis.Aswe can obtain module-by-module power
traces from FPGA-based simulation as well as floorplans from
15https://simmani.github.io

CAD tools (Figure 6), we can conduct pre-silicon thermal anal-
ysis for novel hardware designs running real-world workloads.
HotSpot [62] is one example framework for thermal analysis. We
plan to integrate HotSpot into Simmani for runtime thermal analy-
sis with FPGA-based simulation.

Dynamic Power/ThermalOptimization.Runtime techniques
for power and thermal management have been widely studied in
the context of CPUs (e.g. [14, 15, 17, 24, 62, 63]). As custom ac-
celerators are prevalent in computer systems, it is also important
to do research on these techniques in the context of a variety of
accelerators. As Simmani is generic for any hardware designs, we
believe Simmani will be a useful tool for activity-based runtime
power/thermal techniques for custom accelerators.

Power Model Composition. In this paper, Simmani is demon-
strated for a relatively smaller hardware design with a single tile
compared to contemporary heterogeneous multi-core SoCs. In het-
erogeneous multi-core systems, cores(tiles) and uncore are fairly
independent blocks, and thus, we will improve Simmani’s scalabil-
ity with power model composition: we will train individual power
models for each core(tile) and uncore, and then compose the total
power with statistical methods. Lee et al. [40] also present such a
methodology.

Automatic Training Set Generation. For Simmani, it is cru-
cial to have a good training set for both signal selection and power
model regression. In many cases, it is even more challenging to find
a good training set that is fully representative for their real-world
applications.

A good training set should have good coverage of valid signal
activities. In fact, this challenge is also shared with input generation
for simulation-based verification. Our future work will tackle this
problem in a general setting for both hardware verification and
power modeling. We believe workload generation with coverage-
based fuzzing such as [36] is one promising approach.
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